If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x=127
We move all terms to the left:
4x^2+6x-(127)=0
a = 4; b = 6; c = -127;
Δ = b2-4ac
Δ = 62-4·4·(-127)
Δ = 2068
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2068}=\sqrt{4*517}=\sqrt{4}*\sqrt{517}=2\sqrt{517}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{517}}{2*4}=\frac{-6-2\sqrt{517}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{517}}{2*4}=\frac{-6+2\sqrt{517}}{8} $
| 12w-6w^2=0 | | 5y+8=-20-3y | | 31.2x+15.6x^2=5.2 | | 31.2x+15.6x=5.2 | | 1/2x+4.5=8 | | 19+19+2x+4=180,x | | 4(-2)+12x=-36 | | 4y+12(-5)=-36 | | 6x+12-9=117 | | 4y+12(-2)=-36 | | 1/3u-1/2=-1/5 | | 14p−9p=20 | | 5×2+2(3x-1)=55 | | -1/3-1/2w=2/7 | | 6(x-3)=3(7x+6) | | 2,340,000=0.60x0.45x-2,530,800 | | 2,340,000=0.60x{0.45x-2,530,800} | | H(t)=-16(t)+50(t)+5 | | (x+2)/5=3 | | 40=8÷5y | | 1/3a-4=9=7 | | 2x+20=4x-6 | | y=-3y+18 | | h/6-1=-13 | | 2^x=7777 | | 8y+(3+4=31) | | 20=20-3e-9 | | 5x^2-20=20x | | 9c^2+72=0 | | 2a-7a=5 | | 8q^2-9q+7=0 | | 150=-7r+10 |